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Abstract
Variational calculus on a vector bundle E equipped with a structure of a general
algebroid is developed, together with the corresponding analogs of Euler–
Lagrange equations. Constrained systems are introduced in the variational and
geometrical settings. The constrained Euler–Lagrange equations are derived
for analogs of holonomic, vakonomic and nonholonomic constraints. This
general model covers the majority of first-order Lagrangian systems which are
present in the literature and reduces to the standard variational calculus and the
Euler–Lagrange equations in classical mechanics for E = T M .

PACS numbers: 45.20.Jj, 02.40.Yy, 02.40.Ma
Mathematics Subject Classification: 70H03, 70H25, 53D17, 17B66, 53D10

1. Introduction

The classical analytical mechanics is an old and well-established part of both mathematics and
physics. Nevertheless, many people still look for the best mathematical tools in describing
various aspects of mechanical systems. The use of Lie algebroids and Lie groupoids for
describing some systems of the classical mechanics was proposed by Libermann [23] and
Weinstein [45] more than ten years ago. This turned out to be a very fruitful idea and since
then much work has been done (e.g. [4, 12, 18, 19, 24, 29, 32]) making use of Lie algebroids
in various aspects of classical mechanics and classical field theory. The need of extending
the geometrical tools of the Lagrangian formalism from just tangent bundles to Lie algebroids
is justified by the fact that reductions usually move us out of the environment of the tangent
bundles (think on the rigid body). It is similar to the better-known situation of passing from
the symplectic to the Poisson structures in the Hamiltonian formalism.
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In [12] it was observed that, following some ideas of Tulczyjew and using general
algebroids instead of just Lie algebroids, one can describe a larger class of systems in a simple
and elegant way, both in the Lagrangian and in the Hamiltonian formulation. Moreover, the
proposed geometric picture does not require considering prolongations of Lie algebroids we
start with, as was in the case of previous approaches known in the literature. A further paper
[13] was devoted, in turn, to the construction of Euler–Lagrange equations in the affine setting
of the so-called special affgebroids which is particularly suitable for time-dependent systems.

In this paper, we concentrate on variational calculus and constraints in the algebroid
setting. We work with a general algebroid, defined in [17], as a double vector bundle morphism

ε : T∗E → TE∗ (1.1)

covering the identity on E∗. Here, τ : E → M is a vector bundle playing the role of kinematic
configurations. To some extent then, our paper can be understood as a natural generalization
of [33], where a variational calculus on Lie algebroids has been developed according to the
original ideas of Weinstein [45], and [5, 18], where constraints on Lie algebroids have been
considered. On the other hand, our approach is definitely different from the approaches known
in the literature, even when the equations we obtain cover the corresponding Euler–Lagrange
equations in the Lie algebroid case. This is mainly because we adapt the framework of the
Tulczyjew triple [38, 39, 41], working simply with the morphism (1.1) rather than following the
Klein’s method [21] generalized to Lie algebroids, in which the bundles tangent to E and E∗

are replaced by the prolongations of E with respect to the vector bundle projections τ : E → M

and π : E∗ → M . This, in our opinion, simplifies the whole formalism substantially.
To define a variational problem on an algebroid we have to specify a manifold M of

paths whose tangent space TM represents all possible variations and an action functional W

on M. Then we have to choose a submanifold N of admissible paths and a set (generalized
distribution) D ⊂ TM|N of admissible variations of admissible paths. In [33] admissible
variations are constructed out of homotopies of admissible paths as defined in [8]. For general
algebroids we need different ways of constructing admissible variations, since we have to
accept the fact that they are not tangent to the submanifold of admissible paths in general.
Therefore, we construct admissible variations for an admissible path γ in E out of vertical
variations of γ in E, i.e. out of vertical vector fields along γ . Note that the variations are
defined in E (which is TM in the standard variational calculus), not in M. This is because the
variational calculus on algebroids leads to first-order differential equations in E rather than to
second-order equations in M. This is only the case of the canonical Lie algebroid E = TM

when paths in M are in one-to-one correspondence with admissible paths in E, this time—just
tangent prolongations of paths in M, and admissible variations are tangent prolongations of
variations of paths in M. For a general algebroid, the admissible variations are constructed from
the vertical ones by means of the double vector bundle relation κ = κε : TE −−� TE which
is dual to the morphism ε. Of course, for Lie algebroids our admissible paths coincide with
the infinitesimal homotopies of admissible paths associated with the lifts of time-dependent
sections, as they appear in [33, 8]. We prefer a more fundamental approach which uses κε

to produce admissible variations out of the vertical ones, instead of lifting whole sections
extending paths in E and showing that the result does not depend on the extension. In
the case of E = TM , the mapping ε defining an algebroid structure is the inverse to the
Tulczyjew isomorphism αM : TT∗M → T∗TM . The relation κε is in this case the well-known
canonical flip κM : TTM → TTM . Our construction is especially convenient in the case of
nonholonomic constraints where variations are not tangent to the submanifold of constraints.

It is clear from our variational picture that applying constraints must result in defining a
subset of D. In the case of a general algebroid E, our classification of the constraints is based
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on the way in which the constrained admissible variations are constructed. According to the
tradition, we call them vakonomic, nonholonomic and holonomic constraints. Starting from
a subset S of E, classically understood as a geometric constraint for velocities, we have at
least two natural possibilities of constructing a constraint in admissible variations: one is to
consider only admissible variations which are tangent to S (vakonomic constraint), the other
is to consider only admissible variations coming from those vertical ones which are tangent to
S (nonholonomic constraint). Note that our approach allows us to understand nonholonomic
constraint as a constrained variational problem, contrary to the commonly accepted conviction.
A nonholonomic constraint is called holonomic if the constrained admissible variations are
tangent to S (are vakonomic). Sometimes it is hard to decide without making an experiment
which method should be used to describe the real behavior of the system.

For all types of constraints, we construct analogs of the Euler–Lagrange equation for
systems that are subject to those three types of constraints in a variational way. Note, however,
that the corresponding equations describe ‘regular’ solutions rather than a general solution of
the variational problem. Additionally, like for non-constrained cases in [12], we derive the
equations purely geometrically, without referring to the variational calculus.

The literature concerning constraints in variational calculus is so extensive that it is
impossible to cite in a complete way. We decided to list among references only those
papers dealing actually with Lie algebroids or being a direct inspiration for the framework
we propose. Let us also make it clear that we see the meaning of the present paper not only
as a generalization of formalisms of classical mechanics. Working with the case of a general
algebroid forced us to propose a geometric approach which seems to be new and illustrative
even when applied to very classical situations. The main observation is that an algebroid
structure is a crucial geometric ingredient in constructing the dynamics of the system. It tells
us not only the configurations, velocities and inner degrees of freedom, but also contains the
information on how the admissible variations should be produced from a simple geometric
model of variations of paths in a vector bundle—the vertical ones. This structure is encoded
in a single map (1.1) respecting double vector bundle structures. The brackets and the Jacobi
identity are therefore proven to play a minor role. The Jacobi identity for an algebroid
bracket ensures some integrability conditions that allow us to integrate the Lie algebroid
into an (at least local) Lie groupoid (see [8]), but which is irrelevant for the possibility of
constructing Euler–Lagrange equations. Fixing this geometric setting for our system, it is then
the Lagrangian function which produces a concrete dynamics out of these data. However, we
would like to stress that regularity of the Lagrangian is completely irrelevant for our picture.
The general method of constructing dynamics out of the Lagrangian works for all Lagrangians,
singular or not. The difficulty with singular Lagrangians is that the dynamics we obtain is
really implicit and complicated. In other words, the difficulty with singular Lagrangians
lies in the difficulty in solving equations, not in the geometric construction of the equations
themselves.

Finally, if the variational calculus is considered, only admissible paths come to the play.
This is because we work on the bundle E of kinematic configurations and considering only
admissible paths corresponds, classically, to work with paths in the manifold M of position
configurations lifted canonically to the paths in TM . The geometrical model of (infinitesimal)
variations of an admissible path γ is to consider vertical vector fields along γ : [t0, t1] → E.
Now, the true (mechanical) admissible variations are vector fields along γ constructed from
the vertical ones out of the algebroid structure κ . This is how the algebroid structure comes
to the variational picture. Note that the role of the (Lie) algebroid structure in the classical
setting is usually overlooked, since it is hidden behind structures of the tangent and cotangent
bundles which are viewed as a natural part of the theory.
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The paper is organized as follows. In section 2 we set up the notation and recall the notion
of general algebroid as a double vector bundle morphism. Then we introduce the relation κ

that is used for defining admissible variations. In section 3 we discuss the Lagrange formalism
without constraints on general algebroid. Then we pass in section 4 to the variational calculus.
We derive the variation of the Lagrangian and Euler–Lagrange equations. The final section
is devoted to constraints. Geometric constraints as subsets S ⊂ E give rise to variational
constraints which are classified in pure geometrical terms such as vakonomic, nonholonomic
or holonomic. We derive constrained equations using variational motivations and give them
pure geometric interpretations.

2. Lie algebroids as double vector bundle morphisms

We start with introducing some notation.
Let M be a smooth manifold and let (xa), a = 1, . . . , n, be a coordinate system in M.

We denote by τM : TM → M the tangent vector bundle and by πM : T∗M → M the cotangent
vector bundle. We have the induced (adapted) coordinate systems (xa, ẋb) in TM and (xa, pb)

in T∗M . Let τ : E → M be a vector bundle and let π : E∗ → M be the dual bundle. Let
(e1, . . . , em) be a basis of local sections of τ : E → M and let (e1

∗, . . . , e
m
∗ ) be the dual basis

of local sections of π : E∗ → M . We have the induced coordinate systems:

(xa, yi), yi = ι(ei
∗), in E,

(xa, ξi), ξi = ι(ei), in E∗,

where the linear functions ι(e) are given by the canonical pairing ι(e)(vx) = 〈e(x), vx〉. Thus,
we have local coordinates

(xa, yi, ẋb, ẏj ) in TE,

(xa, ξi, ẋ
b, ξ̇j ) in TE∗,

(xa, yi, pb, πj ) in T∗E,

(xa, ξi, pb, ϕ
j ) in T∗E∗.

It is well known (cf [22, 42]) that the cotangent bundles T∗E and T∗E∗ are examples of
double vector bundles:

T∗E∗ T∗π

πE∗

E

τ

E∗ π
M ,

T∗E
T∗τ

τE∗

E∗

π

E
τ

M .

Note that the concept of a double vector bundle goes back to Pradines [35, 36], see also
[3, 22]. In particular, all arrows correspond to vector bundle structures and all pairs of vertical
and horizontal arrows are vector bundle morphisms. The double vector bundles have been
recently characterized [15] in a simple way as two vector bundle structures whose Euler
vector fields commute. The above double vector bundles are canonically isomorphic with the
isomorphism

Rτ : T∗E −→ T∗E∗ (2.1)

being simultaneously an anti-symplectomorphism (cf [9, 17, 22]). In local coordinates, Rτ is
given by

Rτ (x
a, yi, pb, πj ) = (xa, πi,−pb, y

j ).
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This means that we can identify the coordinates πj with ξj , coordinates ϕj with yj and use
the coordinates (xa, yi, pb, ξj ) in T∗E and the coordinates (xa, ξi, pb, y

j ) in T∗E∗, in full
agreement with (2.1).

For the standard concept and theory of Lie algebroids we refer to the survey article [26]
(see also [14, 27]). It is well known that Lie algebroid structures on a vector bundle E
correspond to linear Poisson tensors on E∗. A 2-contravariant tensor 
 on E∗ is called linear
if the corresponding mapping 
̃: T∗E∗ → TE∗ induced by contraction, 
̃(ν) = iν
, is a
morphism of double vector bundles. One can equivalently say that the corresponding bracket
of functions is closed on (fiber-wise) linear functions. The commutative diagram

T∗E∗ Π
TE∗

T∗E

Rτ
ε

,

describes a one-to-one correspondence between linear 2-contravariant tensors 
 on E∗

and morphisms ε (covering the identity on E∗) of the following double vector bundles
(cf [17, 22]):

T∗E
ε

πE

T∗τ

TE∗

TπτE∗

E
ρ

τ

TM

τME∗ id

π

E∗

π

M
id

M .

(2.2)

In local coordinates, every such ε is of the form

ε(xa, yi, pb, ξj ) = (
xa, ξi, ρ

b
k (x)yk, ck

ij (x)yiξk + σa
j (x)pa

)
(2.3)

(summation convention is used) and corresponds to the linear tensor


ε = ck
ij (x)ξk∂ξi

⊗ ∂ξj
+ ρb

i (x)∂ξi
⊗ ∂xb − σa

j (x)∂xa ⊗ ∂ξj
.

The morphism (2.2) of double vector bundles covering the identity on E∗ has been called an
algebroid in [17], while a Lie algebroid has turned out to be an algebroid for which the tensor

ε is a Poisson tensor. We can consider the adjoint tensor 
+

ε , i.e. the 2-contravariant tensor
obtained from 
ε by transposition:


+
ε = ck

ji(x)ξk∂ξi
⊗ ∂ξj

+ ρb
i (x)∂xb ⊗ ∂ξi

− σa
j (x)∂ξj

⊗ ∂xa

and the opposite tensor −
ε. It is clear that 
+
ε and −
ε are linear. They correspond

therefore to new algebroid structures: the adjoint algebroid structure ε+ and the opposite
algebroid structure ε̄. An algebroid we call a quasi-Lie algebroid if ε+ = ε̄.

The relation to the canonical definition of Lie algebroid is given by the following theorem
(cf [16, 17]).

Theorem 1. An algebroid structure (E, ε) can be equivalently defined as a bilinear bracket
[·, ·]ε on the space Sec(E) of sections of τ : E → M , together with vector bundle morphisms
ρ, σ : E → TM (left anchor and right anchor), such that

[f X, gY ]ε = f · ρ(X)(g)Y − g · σ(Y )(f )X + fg[X, Y ]ε

5
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for f, g ∈ C∞(M),X, Y ∈ Sec(E). The bracket and anchors are related to the bracket
{ϕ,ψ}
ε

= 〈
ε, dϕ ⊗ dψ〉 in the algebra of functions on E∗ which is associated with the
2-contravariant tensor 
ε by the formulae

ι([X, Y ]ε) = {ι(X), ι(Y )}
ε
,

π∗(ρ(X)(f )) = {ι(X), π∗f }
ε
,

π∗(σ (X)(f )) = {π∗f, ι(X)}
ε
.

The algebroid (E, ε) is a quasi-Lie algebroid if and only if the tensor 
ε is skew-symmetric,
and is a Lie algebroid if and only if the tensor 
ε is a Poisson tensor.

Since the dual bundles of πE : T∗E → E and Tπ : TE∗ → TM are, respectively,
τE : TE → E and Tτ : TE → TM , the dual to ε is a relation κ = κε : TE −−� TE.
It is a uniquely defined smooth submanifold κ in TE × TE consisting of pairs (v, v′) such that
ρ(τE(v′)) = Tτ(v) and

〈v, ε(v∗)〉Tτ = 〈v′, v∗〉τE

for any v∗ ∈ T∗
τE(v′)E, where 〈·, ·〉Tτ is the canonical pairing between TE and TE∗, and 〈·, ·〉τE

is
the canonical pairing between TE and T∗E. We will write κ : v −−� v′ instead of (v, v′) ∈ κ .
This relation can be put into the following diagram of ‘double vector bundle relations’:

TE
τE

Tτ

TE
κ

TττE

E
ρ

τ

TM

τMTM
τM

E
τ

σ

M
id

M .

(2.4)

The relation

TE

τE

TE

Tτ

κ

E
ρ

TM

is a vector bundle morphism of the second kind, i.e. it is represented by linear maps of the
fiber TE over v ∈ TM into the fibers TeE for all e ∈ E such that ρ(e) = v. This is also the
simplest example of a morphism of Lie groupoids in the sense introduced and exploited by
Zakrzewski [46]. To such relations we will refer therefore as to Zakrzewski morphisms. The
expression of the Zakrzewski morphism (2.4), dual to ε, in local coordinates reads

κ :
(
xa, Y i, ρb

k (x)yk, Ẏ j
) −−�

(
xa, yi, σ b

k (x)Y k, Ẏ j + c
j

kl(x)ykY l
)
. (2.5)

It is easy to see that the relation κ−1
ε coincides with κε̄+ . Thus κ = κ−1 for quasi-Lie algebroids.

A canonical example of a mapping ε in the case of E = TM is given by ε = εM = α−1
M —

the inverse to the Tulczyjew isomorphism αM : TT∗M → T∗TM [38]. The dual Zakrzewski
morphism is in this case the well-known ‘canonical flip’ κM : TTM → TTM . Since αM is
an isomorphism, κM is a true map, in fact, an isomorphism of the corresponding two vector
bundle structures as well.

6
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A C1-curve γ : R → E (or a C1-path γ : [t0, t1] → E) in an algebroid E we call
admissible, if the tangent prolongation t(γ ) of its projection γ = τ ◦ γ coincides with its
anchor:

t(γ ) = ρ(γ (t)). (2.6)

A curve (path) in the canonical Lie algebroid TM is admissible if and only if it is a tangent
prolongation of its projection on M. If we denote TholE the subset of TE consisting of
holonomic vectors,

TholE = {v ∈ TE : Tτ(v) = ρ(τE(v))}, (2.7)

then admissible curves (paths) in the algebroid E can be characterized as those curves (paths)
whose tangent prolongations lay in TholE. The set of holonomic vectors TholE can be
equivalently characterized as the subset in TE which is mapped via Tρ : TE → TTM to
classical holonomic vectors T2M = {u ∈ TTM : κM(u) = u}, that justifies the name. In other
words,

TholE = (Tρ)−1(T2M).

Note also that TholE is canonically an affine bundle over E modeled on the vertical bundle
VE ⊂ TE. In local coordinates, TholE as submanifold in TE is characterized by the equations
ẋa = ρa

i (x)yi , so (xa, yi, ẏj ) can serve as local coordinates in TholE. It is easy to see that, for
quasi-Lie algebroids, κ(TholE) = TholE.

Now let γ : [t0, t1] → E be a path and ζ : [t0, t1] → VE ⊂ TE be a vertical vector
field along γ, τE(ζ(t)) = γ (t). It is well known that VE � E ⊕M E, so vertical vectors at
e ∈ E can be canonically identified with vectors of the fiber Eτ(e). Thus, the vertical vector
field ζ can be identified with a path ζE in E covering γ . We can now consider the tangent
prolongation t(ζE) to get a vector field along ζE . The operation ζ → t(ζE) associates with
any path ζ in VE a path t(ζE) in TE. For v ∈ TE, in turn, the family κ(v) defines a vector
field over ρ−1(Tτ(v)). More precisely, for every e ∈ ρ−1(Tτ(v)) there is a unique vector
κ(v)e ∈ TeE such that κ(v)e ∈ κ(v). We get the following.

Theorem 2. If γ : [t0, t1] → E is an admissible path in E, then every vertical vector field
ζ : [t0, t1] → VE along γ defines canonically a vector field δζ γ : [t0, t1] → TE along γ by

δζ γ (t) = κ(t(ζE)(t))γ (t). (2.8)

In local coordinates, with γ (t) = (xa(t), yi(t)) and ζ(t) = (xa(t), yi(t), 0, f i(t)),

δζ γ (t) = f j (t)σ b
j (x(t))∂xb (γ (t)) +

(
df k

dt
(t) + ck

ij (x(t))yi(t)f j (t)

)
∂yk (γ (t)). (2.9)

In other words, in local coordinates in TE,

δζ γ (t) =
(

xa(t), yi(t), f j (t)σ b
j (x(t)),

df k

dt
(t) + ck

ij (x(t))yi(t)f j (t)

)
. (2.10)

The vertical vector fields ζ along γ we will call vertical variations or vertical virtual
displacements of γ and the vector fields δζ γ along γ —admissible variations or admissible
virtual displacements. Note that the space V(γ ) of vertical variations of γ is canonically an
(infinite-dimensional) vector space.

Remark. In [8, 33], analogs of the admissible variations δζ γ have been obtained (in Lie
algebroid context, of course) from tangent lifts of time-dependent sections of E. The tangent
lifts of sections have natural generalizations for general algebroids [11, 12]. We prefer,
however, to define the admissible variation δζ γ directly by means of the vertical variation ζ

and the relation κ , as being more fundamental and conceptually closer to the standard concepts
of variations.

7
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3. Lagrangian formalism for general algebroids

The double vector bundle morphism (2.2) can serve as geometric background for generalized
Lagrangian formalisms.

The Lagrangian L : E → R defines two smooth maps: the Legendre mapping: λL :
E −→ E∗, λL = τE∗ ◦ ε ◦ dL, which is covered by the Tulczyjew differential �L : E −→
TE∗,�L = ε ◦ dL:

T∗E
ε

TE∗

τE∗

E
λL

dL
ΛL

E∗

.

.

(3.1)

The Lagrangian function L defines therefore the phase dynamics � = �L(E) ⊂ TE∗ which
can be understood as an implicit differential equation on E∗, solutions of which are ‘phase
trajectories’ of the system β : R → E∗ and satisfy t(β)(t) ∈ �. An analog of the Euler–
Lagrange equation for curves γ : R → E is then

(EL) : t(λL ◦ γ ) = �L ◦ γ.

Equation (EL) simply means that �L ◦ γ is an admissible curve in TE∗, thus it is the tangent
prolongation of λL ◦ γ . In local coordinates, � has the parametrization by (xa, yk) via �L in
the form (cf (2.3))

�L(xa, yi) =
(

xa,
∂L

∂yi
(x, y), ρb

k (x)yk, ck
ij (x)yi ∂L

∂yk
(x, y) + σa

j (x)
∂L

∂xa
(x, y)

)
(3.2)

and equation (EL), for γ (t) = (xa(t), yi(t)), reads

(EL) :
dxa

dt
= ρa

k (x)yk,
d

dt

(
∂L

∂yj

)
= ck

ij (x)yi ∂L

∂yk
+ σa

j (x)
∂L

∂xa
, (3.3)

in full agreement with [24, 29, 30, 45], if only one takes into account that, for Lie algebroids,
σa

j = ρa
j . As one can see from (3.3), the solutions are automatically admissible curves in E,

i.e. ρ(γ (t)) = t(τ ◦ γ )(t). As a curve in the canonical Lie algebroid TM is admissible if and
only if it is a tangent prolongation of its projection on M, first-order differential equations for
admissible curves (paths) in TM may be viewed as certain second-order differential equations
for curves (paths) in M. This explains why, classically, the Euler–Lagrange equations are
regarded as second-order equations.

Remark. The Tulczyjew differential �L : TM → TT∗M with a given Lagrangian function
L on the canonical Lie algebroid E = TM is sometimes called the time-evolution operator
K (see [1]), as the first ideas of this operator go back to the work by Kamimura [20]. This
operator has been studied by several authors in many variational contexts, however, without
recognition of its direct relation to a (Lie) algebroid structure. We named this map after
Tulczyjew, since our understanding is based on his ideas [39].

The time-dependent version of the above picture is the following. Consider the direct
product Ẽ = E × TR of the algebroid E with the canonical (Lie) algebroid TR equipped with
the canonical coordinates (t, ṫ). The corresponding algebroid morphism is clearly the product
of ε and the inverse of the Tulczyjew isomorphism αR:

ε̃ = (
ε, α−1

R

)
: T∗Ẽ = T∗E × T∗TR → TE∗ × TT∗

R = TẼ∗. (3.4)

The affine hyperbundle AR = {(t, 1) ∈ TR} of TR is a Lie affgebroid in the terminology
of [10, 11, 13]. Similarly, the affine hyperbundle Ẽ1 = E × AR in Ẽ is an affgebroid (so

8
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E = Ẽ1 × R understood as the product in fibers is canonically a special affgebroid in the
terminology of [13]). The morphism (3.4) can be reduced then to

(ε, πAR
) : T∗Ẽ1 = T∗E × T∗AR → TE∗ × AR ⊂ T(E∗ × R).

Identifying AR with R in an obvious way, we obtain a morphism of double affine bundles [13]

ε̄ = (ε, π̄R) : T∗(E × R) = T∗E × T∗
R → TE∗ × TR = T(E∗ × R), (3.5)

where π̄R : T∗
R → TR is defined by π̄R(t, s) = (t, 1) ∈ TR.

Here, we view Ē = E ×R canonically as a vector bundle τ̄ : Ē = E ×R → M ×R over
M × R (the pull-back bundle of E with respect to the projection M × R → M) and E∗ × R as
its dual Ē∗. The time-dependent analog of diagram (3.1) defining the Tulczyjew differential,
for the time-dependent Lagrangian L : E × R → R reads

T∗(E × ) ε̄
T(E∗× )

τ(E∗× )

E × λ̄L

dL
Λ̄L

E∗×

.

.

(3.6)

Although there is a canonical identification AR � R, the use of AR explains the definition
of holonomic vectors in this case: since Thol(E × AR) = TholE × AR, we assume
Thol(E × R) = TholE × R. This is due to the fact that the time-dependent picture is, in
fact, an affgebroid picture (see [13, 19, 34, 37, 43]).

In other words, �̄L : E × R → TE∗ × TR � T(E∗ × R) and λ̄L : E × R → E∗ × R read

�̄L(e, t) = (�Lt (e), (t, 1)) , λ̄L(e, t) = (λLt (e), t), (3.7)

where we put Lt(e) = L(e, t) and canonically identified TR with R × R. If now γ is a curve
in E, then the nonautonomous Euler–Lagrange equation reads(

Ena
L

)
: t(λ̄L ◦ γ̄ ) = �̄L ◦ γ̄ , (3.8)

where γ̄ (t) = (γ (t), t) is a natural extension of γ to E × R. The nonautonomous Euler–
Lagrange equation in coordinates takes formally the same form (3.3), but now with L depending
on t.

Example 1. There are many examples based on Lie algebroids, see for instance [7, 18, 24,
29, 33].

(a) For instance, for the canonical Lie algebroid and the corresponding morphism—the inverse
of the Tulczyjew isomorphism [38]

ε = α−1
M : T∗TM → TT∗M,

with ya = ẋa , we get the traditional Euler–Lagrange equations

dxa

dt
= ẋa,

d

dt

(
∂L

∂ẋa

)
= ∂L

∂xa
.

(b) For a Lie algebroid which is just a Lie algebra with structure constants ck
ij with respect to

a chosen basis, we get the Euler–Poincaré equations

d

dt

(
∂L

∂yj

)
= ck

ij y
i ∂L

∂yk
.

(c) True Lie algebroid examples are usually obtained as reductions of standard Lagrangian
systems on tangent bundles, like the reduction of the rigid body to a dynamics on so(3, R).

9
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Another example of this kind is a homogeneous sphere of radius r > 0, mass m and inertia
k2 about any axis, moving on a horizontal table without friction (thus, is the table rotating or
not makes no difference). In an obvious way, the system lives in fact on the Lie algebroid
τ : TR

2 × so(3, R) → R
2 with the product Lie algebroid structure. In standard coordinates,

the algebroid morphism

ε : T∗(TR
2 × so(3, R)) → T(T∗

R
2 × so(3, R)∗)

reads

ε(x, y, ẋ, ẏ, ω, px, py, pẋ, pẏ, pω) = (
x, y, pẋ, pẏ, pω, ẋ, ẏ, px, py, ω3pω2

−ω2pω3 , ω1pω3 − ω3pω1, ω2pω1 − ω1pω2

)
. (3.9)

The pure kinetic Lagrangian

L = 1
2m

(
ẋ2 + ẏ2 + k2

(
ω2

1 + ω2
2 + ω2

3

))
induces the ‘free’ dynamics

d

dt
(mẋ) = 0,

d

dt
(mẏ) = 0,

d

dt
(mk2ω) = 0.

Later we will add nonholonomic constraints to this picture.

The above examples are associated with Lie algebroids, but some ‘nonholonomic
constraints’ on Lie algebroids may lead to Lagrangian systems on quasi-Lie algebroids. This
is related to quasi-Poisson brackets associated with nonholonomic constraints [28, 44].

Example 2 (Algebroid of linear constraints). Consider an algebroid structure on a vector
bundle E equipped with a Riemannian metric 〈·, ·〉E and a vector subbundle C of E. Let
P : E → C be the orthogonal projection. We can choose a local basis of orthonormal sections
(ei) = (eα, eA) of E such that (eα) is a basis of local sections of C. According to the d’Alembert
principle δL(t(γ )(t)) ∈ C0, where C0 ⊂ E∗ is the annihilator of C, which in our case
(cf (3.3)) takes the form(

d

dt

(
∂L

∂yi

)
− ck

αi(x)yα ∂L

∂yk
− σa

i (x)
∂L

∂xa

)
e∗
i = µA(x)e∗

A

for certain functions µA, the constrained dynamics is locally written as

yA = 0,
dxa

dt
= ρa

α(x)yα,
d

dt

(
∂L

∂yβ

)
− ck

αβ(x)yα ∂L

∂yk
− σa

β (x)
∂L

∂xa
= 0. (3.10)

If we deal with a Lagrangian of ‘mechanical type’

L = 1
2 (yi)2 − V (x),

then ∂L
∂yA = yA = 0 and equations (3.10) reduce to

yA = 0,
dxa

dt
= ρa

α(x)yα,
d

dt

(
∂L

∂yβ

)
− c

γ

αβ(x)yα ∂L

∂yγ
− σa

β (x)
∂L

∂xa
= 0

that can be viewed as the Euler–Lagrange equations of the algebroid associated with the
orthogonal projection of the tensor 
ε onto C∗ according to the orthogonal decomposition
E∗ = C0 ⊕ C∗. Of course, even when E is a Lie algebroid, if C is not a Lie subalgebroid, the
projected tensor is not a Poisson tensor and we deal with mechanics on a general algebroid,
in fact a quasi-Lie algebroid in this case, since the projected Poisson tensor remains skew-
symmetric.

10
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4. Variational calculus

For a general algebroid structure ε on the vector bundle τ : E → M and a smooth Lagrangian
function L : E → R, we will define a version of a variational calculus as follows. Our
(infinite-dimensional) manifold M will be the space of all C1-paths γ : [t0, t1] → E in E. Of
course, like in the standard variational calculus, by curves through the path γ ∈ M we mean
C1-maps

h : [t0, t1] × R � (t, s) → h(t, s) ∈ E

such that h(t, 0) = γ (t). Thus, the tangent space TγM—the space of all possible variations of
γ —is represented by ∂h

∂s
(t, 0), i.e. by continuous paths δγ : [t0, t1] → TE covering γ —vector

fields along γ . The admissible paths form a subset N which is a submanifold in M in a
natural sense, since a path γ is admissible if and only if t(γ ) ⊂ TholE. As easily seen (see
also [33]), a vector field δγ : [t0, t1] → E along an admissible path γ belongs to TγN if and
only if κE ◦ t(δγ ) is tangent to TholE, i.e.

κE(t(δγ )(t)) ∈ TTholE ⊂ TTE, (4.1)

where κE : TTE → TTE is the canonical flip.
Note that we use here ‘infinite-dimensional manifold’ structures in a very intuitive sense.

However, we could have put rigorously a Banach manifold structure on M,N , etc, similarly
as has been done in [33]. On the other hand, because the implicit function theorem will not
be used, a less formal language is completely satisfactory for our purposes, so we will skip
technical complications associated with the Banach manifold setting.

The Lagrangian L defines a differentiable function (action functional) WL : M → R by

WL(γ ) =
∫ t1

t0

L(γ (t)) dt. (4.2)

Completely classically, the differential of the action dWL(γ ), paired with the tangent vector
δγ , gives

〈δγ, dWL(γ )〉 =
∫ t1

t0

〈δγ (t), dL(γ (t))〉 dt. (4.3)

Now, we will make use of the algebroid structure on E and will reduce the differential dWL

to a distribution D over the submanifold N in M consisting of admissible paths. For an
admissible path γ : [t0, t1] → E, the space D(γ ) ⊂ TγM of this distribution is exactly the
space of admissible variations (virtual displacements) δζ γ as they were defined in (2.8), i.e.

D(γ ) = {δζ γ : ζ ∈ V(γ )}. (4.4)

In this sense, the space V(γ ) of vertical variations, which is geometrically well-understood as
the space of sections of the vertical bundle VE along γ , is a model space for the space D(γ )

of admissible (mechanical) variations which does not have so nice geometrical description in
general. The reader can easily check that in the case of the canonical Lie algebroid E = TM the
admissible variations we have just introduced coincide with variations of tangent prolongations
of paths in M (with not fixed end-points yet), as they are understood in classical mechanics.
The geometrical meaning of these variations is usually not understood being hidden behind
the ‘obvious’ Lie algebroid structure on TM .

Let us consider now the differential dWL being restricted to D. Our aim is to show
its special realization, very similar to the one present in the standard variational calculus of
analytical mechanics. Of special interest are variations δζ γ coming from the set V(γ )0 of
paths ζ that vanish at the end points, ζ(t0) = 0, ζ(t1) = 0. They form a submanifold D0 of

11
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D and analogs of the standard Euler–Lagrange equations are obtained as equations for critical
points of (dWL)|D0 , i.e. for such γ ∈ N that dWL(γ ) vanishes on D0(γ ). Note, however, that
in contrast with what has been done in [33], being interested in the infinitesimal picture only,
we do not care about global homotopies inside the manifold of admissible paths. In fact, our
distribution is not tangent to N in general, so even ‘infinitesimal homotopies’ go outside N
in the case of a general algebroid. This is due to the following observation.

Theorem 3. The distribution D is tangent to the submanifold N of admissible paths if and
only if the right and the left anchor coincide, ρ = σ , and they induce a homomorphism of
brackets:

ρ([X, Y ]ε) = [ρ(X), ρ(Y )]vf , (4.5)

where [·, ·]vf is the bracket of vector fields. In particular, D ⊂ TN if (E, ε) is a Lie algebroid.

Proof. It is a matter of easy calculations to show that, according to (2.10), the vector field δζ γ

along γ (t) = (x(t), y(t)) satisfies (4.1) if and only if

df j

dt
(t)

(
σb

j − ρb
j

)
(x(t)) + f j (t)yi(t)

(
∂σ b

j

∂xa
ρa

i − ∂ρb
i

∂xa
σ a

j − ck
ij ρ

b
k

)
(x(t)) = 0.

Since the above should be satisfied for any admissible γ and for any given x(t) = x(t0), we
can take f j (t0),

df j

dt
(t0) and y(t0) arbitrary. Hence we get ρ = σ and

∂σ b
j

∂xa
ρa

i − ∂ρb
i

∂xa
σ a

j − ck
ij ρ

b
k = ∂ρb

j

∂xa
ρa

i − ∂ρb
i

∂xa
ρa

j − ck
ij ρ

b
k = 0.

The latter can be rewritten in the form ρ([ei, ej ]ε) = [ρ(ei), ρ(ej )]vf , whence (4.5). �

Remark. One develops often a variational calculus introducing homotopies as ‘paths in path
spaces’ satisfying certain boundary conditions—this is exactly how the variational calculus on
Lie algebroids has been developed in [33]. However, this approach is much more restrictive
when passing to constraints. Let us only mention the existence of singular paths in the
theory of linear nonholonomic constraints. In this case no real variation of a singular path is
possible, so the differential calculus does not make sense any longer. On the other hand, the
standard Euler–Lagrange equations are obtained as critical points of the action—so in fact only
‘infinitesimal homotopies’, i.e. admissible variations are used. In the Lie algebroid case, the
admissible homotopies can be taken as integral curves of variations. Crainic and Fernandes
have related homotopies of admissible paths to flows of the complete lifts of time-dependent
sections of the Lie algebroid in their work [8] on integration of Lie algebroids. They did
not mention the variational calculus, but this integration is actually finding a manifold G(E)

(Lie groupoid) that allows us to represent the variational calculus on the Lie algebroid E as
a reduction of standard variational calculus on TG(E). Let us also point out that, contrary
to the approaches by Crainic,Fernandes and Martı́nez [8, 33], we work in full generality and
we do not assume at the beginning that admissible variations come from vertical variations
vanishing at the end points.

Since calculating dWL(γ ) on D according to (4.3), we can divide our path into a finite
number of smaller parts if needed, we can assume for simplicity that the path γ lies in a single
coordinate chart (xa, yi), so we can write γ (t) = (xa(t), yi(t)). That our path is admissible
means now that

dxa

dt
(t) = ρa

i (γ (t))yi(t). (4.6)
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For an admissible variation δζ γ , with ζ(t) = f i(t)ei(γ (t)), we have then

〈δζ γ (t), dL(γ (t))〉 =
[
f k(t) · σa

k (γ (t)) · ∂L

∂xa
(γ (t))

+

(
yi(t) · c

j

ik(γ (t)) · f k(t) +
df j

dt
(t)

)
· ∂L

∂yj
(γ (t))

]

= f k(t)

(
σa

j (γ (t)) · ∂L

∂xa
(γ (t)) + yi(t) · ck

ij (γ (t)) · ∂L

∂yk
(γ (t)) − d

dt

∂L

∂yk
(γ (t))

)

+
d

dt

(
f j (t)

∂L

∂yj
(γ (t))

)
.

Writing λL : E → E∗, λL(x, y) = ∂L
∂yj (x, y)e

j
∗ , for the vertical derivative (Legendre

map) associated with L, and the variation of the Lagrangian along γ :

δL(t(γ )(t)) =
(

σa
j (γ (t)) · ∂L

∂xa
(γ (t)) + yi(t) · ck

ij (γ (t)) · ∂L

∂yk
(γ (t)) − d

dt

∂L

∂yj
(γ (t))

)
ej
∗,

(4.7)

we can write

〈δζ γ (t), dL(γ (t))〉 = d

dt
〈ζE(t), λL(γ (t))〉 + 〈ζE(t), δL(t(γ )(t))〉. (4.8)

According to (3.2), it is clear that δL(t(γ )(t)) = 0 if and only if the image of the path dL(γ (t))

under ε is admissible in TE∗, i.e. if and only if γ satisfies the Euler–Lagrange equations (3.3).
In a more explicit form, the variation of the Lagrangian can be viewed as a map

δL : TholE → E∗ which in coordinates reads

δL(x, y, ẏ) =
(

σa
j (x)

∂L

∂xa
(x, y) + yick

ij (x)
∂L

∂yk
(x, y)

− yiρa
i (x)

∂2L

∂xa∂yj
(x, y) − ẏk ∂2L

∂yk∂yj
(x, y)

)
ej
∗ . (4.9)

A geometrical description of the variation of the Lagrangian is as follows. If v ∈ TE is a
holonomic vector, v ∈ TholE, then, as easily seen,

�L ◦ τE, TλL : TE → TE∗

are bundle maps over λL : E → E∗ and δ̂L(v) = �L(τE(v)) − TλL(v) is a vertical vector
in TτE(v)E

∗. As the vertical bundle VE∗ ⊂ TE∗ is canonically isomorphic to E∗ ⊕M E∗ by
means of the vertical lift, we can identify δ̂L(v) with a vector δL(v) = (δ̂L(v))E∗ from the
fiber of E∗ over τ(τE(v)) ∈ M which, expressed in coordinates, is exactly (4.9). In other
words,

δL = ((�L ◦ τE − TλL)|TholE)E∗ = ((ε ◦ dL ◦ τE − T(τE∗ ◦ ε ◦ dL))|TholE)E∗ . (4.10)

Using the obvious pairing between VE and VE∗ based on the fact that the fibers over e and
e∗, respectively, are canonically dual spaces if τ(e) = π(e∗), we can write (4.8) equivalently
in the form

〈δζ γ (t), dL(γ (t))〉 = d

dt
〈ζ(t), dL(γ (t))〉 + 〈ζ(t), δ̂L(t(γ )(t))〉. (4.11)
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Integrating (4.8) (or (4.11)) we get

〈δζ γ, dWL(γ )〉 =
∫ t1

t0

〈δζ γ (t), dL(γ (t))〉 dt

= 〈ζE(t), λL(γ (t))〉|t1t0 +
∫ t1

t0

〈ζE(t), δL(t(γ )(t))〉 dt

= ζ(L)(γ (t))|t1t0 +
∫ t1

t0

〈ζ(t), δ̂L(t(γ )(t))〉 dt. (4.12)

Now, if ζ ∈ V(γ )0, then 〈dWL(γ ), δζ γ 〉 = ∫ t1
t0

〈ζE(t), δL(t(γ )(t))〉 dt . If ζ ∈ V(γ )0, then
r(t)ζ(t) ∈ V(γ )0 for any function r : [t0, t1] → R, so dWL(γ ) vanishes on D0(γ ) if and only
if δL(t(γ )) = 0.

We can summarize the above observations as follows.

Theorem 4. By means of the variational calculus for a general algebroid, one can define the
velocities–momenta correspondence (Legendre map): λL : E → E∗ and the variation of the
Lagrangian δL : TholE → E∗, such that the derivative of the action functional dWL(γ ) is
represented by

〈dWL(γ ), δζ γ 〉 = 〈ζE(t), λL(γ (t))〉|t1t0 +
∫ t1

t0

〈ζE(t), δL(t(γ )(t))〉 dt.

Moreover, formula (4.10) defines the Tulczyjew differential �L : E → TE∗ associated
with the Lagrangian L. An admissible path γ (t) = (x(t), y(t)) in E satisfies δL(t(γ )) = 0
if and only if dWL vanishes on D0(γ ) and if and only if γ satisfies the Euler–Lagrange
equations (3.3).

For a given admissible path γ : [t0, t1] → E, the values p(t0) = λL(γ (t0)) and p(t1) =
λL(γ (t1)) represent the initial and the final momenta, and ηγ (t) = δL(t(γ )(t))—the external
force that we have to apply to make the system moving along the path γ . A standard way to
obtain the dynamics in analytical mechanics is to look for critical points of the action functional
with respect to admissible variations δζ γ which vanish at the end points. In this way, we obtain
the Euler–Lagrange equations (3.3) for admissible curves in the form δL(t(γ )(t)) = 0. In a
more general setting, one can view the force-defining equation

δL(t(γ )(t)) = ηγ (t) (4.13)

as a differential equation for γ if the external force ηγ (t) is given. In many cases, this force
is defined in a path-independent way as a time-dependent field of forces F : E × R →
E∗, π(F (e, t)) = τ(e), i.e. ηγ (t) = F(γ (t), t).

There is no real difference when we admit time-dependent Lagrangians L : E × R → R,
so that the action reads

WL(γ ) =
∫ t1

t0

L(γ (t), t) dt. (4.14)

Formula (4.12) just takes the form

〈dWL(γ ), δζ γ 〉 =
(

f j (t) · ∂L

∂yj
(γ (t), t)

)∣∣∣∣t1
t0

+
∫ t1

t0

〈ζE(t), δL(t(γ )(t), t)〉 dt, (4.15)

where

δL(t(γ )(t), t) =
(

σa
j (γ (t)) · ∂L

∂xa
(γ (t), t)

+ yi(t) · ck
ij (γ (t)) · ∂L

∂yk
(γ (t), t) − d

dt

∂L

∂yj
(γ (t), t)

)
ej
∗ . (4.16)
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In local coordinates,

δL(x, y, t, ẏ) =
(

σa
j (x)

∂L

∂xa
(x, y, t) + yick

ij (x)
∂L

∂yk
(x, y, t)

− yiρa
i (x)

∂2L

∂xa∂yj
(x, y, t) − ẏk ∂2L

∂yk∂yj
(x, y) − ∂2L

∂t∂yj
(x, y, t)

)
ej
∗ . (4.17)

The geometrical picture is based on (3.6). Now, δL : TholE × R → E∗ is defined as the map
whose vertical lift is

δ̂L = vπ ◦ δL = (�̄L ◦ τĒ − Tλ̄L)|TholE×R = (ε̄ ◦ dL ◦ τĒ − T(τĒ∗ ◦ ε̄ ◦ dL))|TholE×R (4.18)

and the standard Euler–Lagrange equation for the time-dependent Lagrangian in the presence
of external forces takes the form

δL(t(γ )(t), t) = ηγ (t).

Again, the equation δL(t(γ )(t), t) = 0 means that the image of the path dL(γ (t), t) in
T∗(E × R) under ε̄ is an admissible path (tangent prolongation) in T(E∗ × R).

5. Constraints

In view of the just developed variational calculus on general algebroids we can introduce, in
principle, two types of constraints: the configuration constraints which are put in the ‘bundle
of velocities’ E, i.e. constrains for paths in N , and the virtual displacement constraints put
for variations, i.e. for fibers of the admissible distribution D. As the admissible variations are
also related to paths in E, the latter constraints can be defined also via constraints in E that
often leads to misunderstandings. In this way, a constrained submanifold in E (classically
in E = TM) is sometimes referred to as a nonholonomic constraint. Note, however, that in
general, speaking on a submanifold (in general—subset) of E as of a constraint does not make
much sense before we decide how the constrained submanifold produces true constraints in
the variational calculus. To put some order in the subject, we will start with describing our
understanding of constraints in the variational calculus for general algebroid that will motivate
a description of constraints in the pure geometric setting.

Definition 1. A constraint in the variational calculus for a general algebroid is a subset C
of the bundle D. The corresponding (dynamical) configuration constraint is the subset CN
obtained from C by the projection to N . The constrained variational calculus is the study of
the differential of the action functional dWL restricted to C, or C0 = C

⋂
D0.

It seems that the true variational constraints in physics strongly depend on the actual system
we work with. In theory, however, the variational constraints are often derived from geometric
constraints of different types in a more or less canonical way. A geometric constraint will be
understood as a submanifold (more generally, a subset) S in E. Of course, as we have already
mentioned (see also [40]), the submanifold (subset) S ⊂ E does not define a true variational
constraint without additional specifications. There are at least two geometrically justified
ways of deriving variational constraints out of S. According to the tradition (see the review
article [6]), we will refer to them, respectively, as to vakonomic and nonholonomic constraints.
In the vakonomic case we accept only admissible variations (virtual displacements) which are
tangent to the constraint, while in the nonholonomic case we admit only vertical variations
which are tangent to the constraint, i.e. which belong to V(S) = TS

⋂
VE.
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Definition 2.

• The vakonomic constraint associated with S ⊂ E is the variational constraint Cvk(S)

consisting of these admissible variations δζ γ which are tangent to S, i.e. δζ γ (t) ∈ TS. In
particular, the admissible path γ lies in S.

• The nonholonomic constraint associated with S ⊂ E is the variational constraint Cnh(S)

consisting of admissible variations δζ γ associated with vertical variations ζ which are
tangent to S. In other words, ζ(t) ∈ TS (thus, ζ(t) ∈ V(S)). In particular, the admissible
path γ lies in S.

• A geometric constraint S ⊂ E we call holonomic, if the nonholonomic variational
constraint associated with S implies the vakonomic constraint, i.e. Cnh(S) ⊂ Cvk(S).

Note that the variational constraints associated with S can be very small or even empty,
e.g. when there are no admissible paths in S. To avoid pathologies like that, certain additional
integrability conditions can be introduced. A natural integrability condition we will use is
ρ(S) ⊂ TSM , where SM = τ(S). It is assumed in the sequel that the geometric constraints
are integrable.

Remark. We should stress here the obvious fact that TS is well defined in a general setting
even if S is not a submanifold of E, since it makes sense to speak about smooth curves in E
with values in S. Note that, just by definition, for the vakonomic constraint only the restriction
of the Lagrangian function L to S plays the role in the variational problem. The latter is
not the case for nonholonomic constraints, except for the holonomic case. We can say that
holonomic constraints are those nonholonomic constraints for which only the restrictions of
the Lagrange functions to S play the role in the corresponding variational problems. One can
easily derive from the form of lift (2.10) that a linear (integrable) constraint S, i.e. a vector
subbundle S ⊂ E, is holonomic if and only if the algebroid bracket [·, ·]ε is closed on sections
of S, i.e. S a subalgebroid in E.

5.1. Vakonomic constraints—variational approach

The variational problem now depends on studying the differential of the action functional
on Cvk(S). A naive but instructive approach is that the corresponding constrained Euler–
Lagrange equations describe admissible paths γ in S which are critical points of WL relative
to the generalized distribution Cvk

0 (S) = Cvk(S)
⋂

D0, i.e. such that dWL(γ ) vanishes on all
δζ γ ∈ Cvk

0 (S)(γ ):

〈dWL(γ ), δζ γ 〉 =
∫ t1

t0

〈dL(γ (t)), δζ γ (t)〉 dt =
∫ t1

t0

〈ζE(t), δL(t(γ )(t))〉 dt = 0 (5.1)

for all vertical vector fields ζ along γ , with ζ(t0) = 0, ζ(t1) = 0, and such that δζ γ is tangent
to S. Of course, it is hard to decide how large is Cvk

0 (S). This is related to the difficult questions
of the existence of singular or abnormal paths, etc, which cannot be solved in the whole
generality. Leaving these questions aside, we will reduce ourselves to natural and geometric
sufficient conditions ensuring that a given admissible path satisfies (5.1). Namely, let us
observe that if � is a function vanishing on S, then, as δζ γ is tangent to S,

〈d�(γ (t)), δζ γ (t)〉 = 0.

Thus, if

δ(L − µk�
k)(t(γ )(t), t) = 0, γ (t) ∈ S, (5.2)
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for certain µk : [t0, t1] → R and for certain functions �k vanishing on S (e.g. defining S
according to the implicit function theorem), then, according to (5.1) applied to L := L−µk�

k ,

〈dWL(γ ), δζ γ 〉 =
∫ t1

t0

〈dL(γ (t)), δζ γ (t)〉 dt

=
∫ t1

t0

〈(dL − µk(t) d�k)(γ (t)), δζ γ (t)〉 dt

=
∫ t1

t0

〈ζE(t), δ(L − µk�
k)(t(γ )(t), t)〉 dt = 0,

so (5.1) is satisfied. Such γ we will call a normal solution of the vakonomic variational
problem associated with S ⊂ E. In the above procedure we can take as well a time-dependent
Lagrangian L satisfying (5.2). The latter does not depend directly on how big is Cvk

0 (S) and
it simply means that the image of the path d

(
L − µk�

k
)
(γ (t), t) in T∗(E × R) under ε̄ is

an admissible path (tangent prolongation) in T(E∗ × R). Motivated by the tradition we will
regard equation (5.2) as the vakonomically constrained Euler–Lagrange equation. There is a
clear analog of the above procedure also for time-dependent constraints. The nonautonomous
vakonomic Euler–Lagrange equation takes in coordinates the form

�k(x, y) = 0,
dxa

dt
= ρa

k (x)yk, (5.3)

d

dt

∂L

∂yj
(x, y, t) − cl

ij (x)yi ∂L

∂yl
(x, y, t) − σa

j (x)
∂L

∂xa
(x, y, t)

= µ̇k(t)
∂�k

∂yj
(x, y) + µk(t)

(
d

dt

∂�k

∂yj
(x, y)

− cl
ij (x)yi ∂�k

∂yl
(x, y) − σa

j (x)
∂�k

∂xa
(x, y)

)
(5.4)

and reduces to the classical one for the canonical Lie algebroid E = TM (see, e.g. [6]).
In the above form, however, the vakonomic Euler–Lagrange equation is not easily seen to
depend only on the restriction of L to S. Below we present a geometric approach clarifying
this question. On the other hand, this approach seems to be more transparent not only at this
point.

5.2. Vakonomic constraints—geometric approach

Of course, one can take (5.3) as the Euler–Lagrange equation for the vakonomic constraints
without referring to the variational calculus. It has the advantage that we do not care about
possibly complicate constrained admissible variations. There is a nice geometric interpretation
of these equations. For simplicity we will reduce to the autonomous case, so that L does not
depend on t. Let us first recall that with any submanifold S in E and any function L : S → R

one can associate canonically a Lagrangian submanifold SL in T∗E defined by

SL = {αe ∈ T∗
eE : e ∈ S and 〈αe, ve〉 = dL(ve) for every ve ∈ TeS}.

If S = E, then SL = dL(E), i.e. SL reduces to the image of dL. We have the following.

Theorem 5. A curve γ : R → E satisfies the vakonomic Euler–Lagrange equations (5.2)
associated with an autonomous Lagrangian L : E → R if and only if it is a projection to
S of a curve γ ∗ : R → SL whose image under ε : T∗E → TE∗ is admissible (is a tangent
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prolongation of a curve in E∗). In particular, the vakonomic Euler–Lagrange equations
depend on the restriction of the Lagrangian to the constraint only.

Proof. If a curve γ satisfies (5.2), then γ is admissible and lies in S. Moreover, the curve
γ ∗(t) = dL(γ (t)) − µk(t) d�k(γ (t)) in T∗E lies in SL, projects on γ and is mapped through
ε to an admissible curve.

Conversely, if a curve γ ∗(t) has the above properties, then there are µk(t) such that
γ ∗(t) = dL(γ (t)) − µk(t) d�k(γ (t)). Since admissibility of ε(γ ∗(t)) is equivalent to
δ(dL − µk(t) d�k)(γ (t)) = 0 (theorem 4), the theorem follows. �

One can also think that the vakonomic Euler–Lagrange equations are not equations on
curves in E but on curves in SL. Then, we can just consider the projections of the solutions
onto E.

The corresponding diagram is the following

T∗E ⊃ SL
ε

TE∗

τE∗

S

rL
ΛL

λL
E∗

(5.5)

where rL is the relation which is the inverse of the projection (πE)|SL
: SL → S and �L = ε◦rL.

Like in the non-constrained case, a curve γ in S satisfies the vakonomic E–L equation if it is
related via �L to an admissible curve in TE∗.

From the above it should be clear that the phase space for the vakonomic constraint S is
τE∗(ε(π−1(S))) and the phase dynamic associated with the Lagrangian L is ε(SL). There is
an obvious version of the above picture in the nonautonomous case.

Example 3 (Pontryagin’s maximum principle). For an algebroid (E, ε) over M consider the
product algebroid EU = E × TU . Considering an optimal control problem in which the
manifold U plays the role of the set of control parameters and associated with

(1) an integrable constraint S defined by means of a U-dependent section f : M × U → E

of E by (e, v) ∈ S ⇔ e = f (τ(e), τM(v)) and
(2) a Lagrangian function L : S → R depending only on the base, L(e, v) = L(τ(e), τM(v)).

In local coordinates (xa, uα, yi, u̇β) in EU and the adapted coordinates (x, u, y, u̇, px,

pu, ξ, π) in T∗EU , the product algebroid morphism εU = (ε, εM) reads

εU (x, u, y, u̇, px, pu, ξ, π) = (
x, u, ξ, π, ρb

k (x)yk, u̇, ck
ij (x)yiξk + σa

j (x)pxa , pu

)
.

The Lagrangian submanifold S∗
L ⊂ T∗EU consists of points(

x, u, f (x, u), u̇,

(
∂L

∂x
− ξ · ∂f

∂x

)
(x, u),

(
∂L

∂u
− ξ · ∂f

∂u

)
(x, u), ξ, 0

)
,

so the phase (implicit) dynamics is given by εU (S∗
L), which is the set of points(

x, u, ξ, 0, ρb
k (x)f k(x, u), u̇, ck

ij (x)f i(x, u)ξk

+ σa
j (x)

(
∂L

∂xa
− ξ · ∂f

∂xa

)
(x, u),

(
∂L

∂u
− ξ · ∂f

∂u

)
(x, u)

)
,
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and the vakonomic Euler–Lagrange equations read

dxb

dt
= ρb

k (x)f k(x, u), (5.6)

dξj

dt
= ck

ij (x)f i(x, u)ξk + σa
j (x)

(
∂L

∂xa
− ξi

∂f i

∂xa

)
(x, u), (5.7)(

∂L

∂u
− ξi

∂f i

∂u

)
(x, u) = 0. (5.8)

Equations (5.6) and (5.7) describe the phase dynamics on E∗ × U associated with the
Hamiltonian H(x, u, ξ) = f i(x, u)ξi − L(x, u) via the tensor 
ε—trivially extended from
E∗ to E∗ × U . Equation (5.8), in turn, is the equation for critical points of this Hamiltonian
with respect to the control variable u. In the classical case E = TM , equations (5.7) and (5.8)
read

dpa

dt
=

(
∂L

∂xa
− pb

∂f b

∂xa

)
(x, u),

(
∂L

∂uα
− pb

∂f b

∂uα

)
(x, u) = 0.

We recognize the Pontryagin’s maximum principle in its normal differential form. For Lie
algebroids, this principle was first proposed in [31].

5.3. Nonholonomic constraints—variational approach

A naive but instructive approach is to assume in this case that the constrained Euler–Lagrange
equations describe admissible paths γ in S which are critical points of WL relative to the
generalized distribution Cnh

0 (S), i.e. such that (5.1) is satisfied for all δζ γ ∈ Cnh
0 (S). Again,

we will not discuss the problem how large is Cnh
0 (S). Recall that δζ γ ∈ Cnh(S) means that

ζ(t) ∈ V(S), where V(S) = TS
⋂

VE is the vertical part of TS. If S is a submanifold and V(S)

has a constant rank, then the annihilator (V(S))0 ⊂ T∗E|S is a vector subbundle (over S) in
T∗E. In this case, the quotient bundle T∗E|S/(V(S))0 is canonically isomorphic to the bundle
V∗(S)—dual to V(S). The latter, viewed as a subbundle in pr1 : E ⊕M E → E in an obvious
way, is called the bundle of virtual displacements in [5, section 8]. Of course, (V(S))0 can be
viewed in a similar way as a subbundle in E ⊕M E∗ → E. In this interpretation, which we
will generally use in the sequel, (V(S))0

e ⊂ E∗
τ(e), e ∈ S, is the annihilator of (V(S))e ⊂ Eτ(e)

and (V∗(S))e = E∗
τ(e)/(V(S))0

e .
It is obvious that (5.1) is satisfied for all δζ γ ∈ Cnh

0 (S) if (and not only if, in general)

δL(t(γ )(t)) ∈ (V(S))0
γ (t). (5.9)

This equation we will view as the constrained nonholonomic Euler–Lagrange equation. Again,
it is not exactly equivalent to the variational principle in general as it gives only a sufficient
condition for a relative critical point of the action functional WL. In local coordinates, if �k

are functions defining the constraint S via equations �k(x, y) = 0, then V(S)0 is generated by
∂�k

∂yi at points of S, so the constrained nonholonomic Euler–Lagrange equation reads

�k(x, y) = 0,
dxa

dt
= ρa

i (x)yi, (5.10)

d

dt

∂L

∂yj
(x, y) − cl

ij (x)yi ∂L

∂yl
(x, y) − σa

j (x)
∂L

∂xa
(x, y) = µk(t)

∂�k

∂yj
(x, y). (5.11)

For E = TM this is exactly the Chetaev principle, and for E being an arbitrary Lie
algebroid equations (5.10) and (5.11) coincide with the equations associated with nonlinear
nonholonomic constraints considered in [5, 25].
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Example 4 (rolling ball). Consider now the celebrated example of a ball rolling on a rotating
table (cf [2, 5]), more precisely, of a homogeneous sphere of radius r > 0, mass m and inertia
about any axis k2, moving without sliding on a horizontal table which rotates with a constant
angular velocity �. Like in example 1, we can recognize that the system lives on the Lie
algebroid τ : TR

2 × so(3, R) → R
2 with the product Lie algebroid structure and is ruled by

the pure kinetic Lagrangian

L = 1
2m

(
ẋ2 + ẏ2 + k2

(
ω2

1 + ω2
2 + ω2

3

))
,

this time however with the presence of nonholonomic constraints

�1(x, y, ẋ, ẏ, ω) = ẋ − rω2 + �y = 0,

�2(x, y, ẋ, ẏ, ω) = ẏ + rω1 − �y = 0.

According to (5.10) and (5.11), we get the constrained nonholonomic Euler–Lagrange equation
in the form

ẋ − rω2 + �y = 0, ẏ + rω1 − �y = 0,
d

dt
(mẋ) = µ1,

d

dt
(mẏ) = µ2,

d

dt
(mk2ω1) = rµ2,

d

dt
(mk2ω2) = −rµ1,

d

dt
(mk2ω3) = 0

that easily implies

ẍ +
k2�

r2 + k2
ẏ = 0, ÿ − k2�

r2 + k2
ẋ = 0.

If S is a linear constraint, i.e. S is a vector subbundle in E, then (V(S))e can be identified
with Sτ(e) and (V(S))0

e with S0
τ(e) ⊂ E∗

τ(e). In this case, the constrained nonholonomic Euler–
Lagrange equation (5.9) takes the form

δL(t(γ )(t)) ∈ S0
γ (t), (5.12)

which is exactly the d’Alembert’s principle of virtual work. The d’Alembert’s principle for
Lie algebroids was first proposed in [7].

More generally, assume that S = A is an affine constraint, i.e. A is an affine subbundle
in E. Then, V(A)e can be canonically identified with the fiber v(A)τ(e) ⊂ Eτ(e) of a vector
bundle v(A) which serves as a model vector bundle of A. Hence, (V(S))0

e can be identified
with v(A)0

τ(e) ⊂ E0
τ(e) and the constrained nonholonomic Euler–Lagrange equation reads

δL(t(γ )(t)) ∈ (v(A))0
γ (t). (5.13)

5.4. Affine nonholonomic constraints—geometric approach

Let us assume that S = A is an affine subbundle in E (over AM ) satisfying the integrability
condition ρ(A) ⊂ TAM . In this case (V(A))e is constant along fibers of A and coincides with
v(A)τ(e). Let v(A)0 be the annihilator of v(A) which is a subbundle in E∗ (over AM ). Let
iv(A) : v(A) ↪→ E be the inclusion of v(A) in E, let i∗v(A) : E∗

|AM
→ v(A)∗ be the dual of iv(A),

and let

Ti∗v(A) : T(E∗
|AM

) → Tv(A)∗
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be its tangent prolongation. According to the integrability condition ρ(A) ⊂ TAM , the image
ε(T∗E|A) lies in T(E∗

|AM
) and the corresponding diagram is the following:

T∗E |A
ε T(E∗

|AM
)

Ti∗v(A)
Tv(A)∗

τv(A)∗

E ⊃ A
λL

dL
ΛA

L

λL

λA
L

E∗
|AM

i∗v(A)
v(A)∗

.

(5.14)

The space v(A)∗ is the phase space for the nonholonomic constraint A with λA
L : A →

v(A)∗, λA
L = i∗v(A) ◦ λL, as the constrained Legendre map, and �A

L : A → Tv(A)∗, with
�A

L = Ti∗v(A) ◦ ε ◦ dL, as the constrained Tulczyjew differential. The set �A
L(A) ⊂ Tv(A)∗

is the phase dynamics associated with the Lagrangian L. The nonholonomic Euler–Lagrange
equation is described as follows.

Theorem 6. A curve γ : R → A satisfies the nonholonomic Euler–Lagrange equation
δL(t(γ )(t)) ∈ v(A)0

γ (t) if and only if the curve �A
L(γ (t)) in Tv(A)∗ is admissible (is the

tangent prolongation of a curve in v(A)∗).

Proof. Consider local coordinates (xI ) = (xi, xι) on an open set U of M such that AM is
determined by the constraint xι = 0. A local basis {ea}a=1,...,n−r of sections of v(A) together
with a section e0 of A we can extend to local sections of E and complete them to a local basis of
sections {e0, ea, eα} of the vector bundle E. Then, in coordinates (xI , yA) = (xi, xι, y0, ya, yα)

adapted to this bases, the local equations defining the constrained subbundle A as an affine
subbundle of E over AM are xι = 0, y0 = 1, yα = 0, so points of A have coordinates
(xi, 0, 1, ya, 0). Note that integrability of the constraint A means that ρι

0(x) = 0 and ρι
a(x) = 0

at points x ∈ AM .
Taking local coordinates (xi, ya) on v(A) we may write iv(A) : v(A) ↪→ E as

iv(A)(x
i, ya) = (xi, 0, 0, ya, 0) and i∗v(A)(x

i, 0, ξ0, ξa, ξα) = (xi, ξa), so

Ti∗v(A)(x
i, 0, ξA, ẋj , 0, yB) = (xi, ξa, ẋ

j , ξ̇a).

For the adapted local coordinates (xi, xι, y0, ya, yα, pi, pι, ξ0, ξa, ξα) in T∗E, the map ε

reduced to (T∗E)|A takes values in T(E|AM
) (integrability) and reads

ε(xi, 0, 1, ya, 0, pI , ξA) = (
xi, 0, ξA, ρj

e (xi, 0)ye

+ ρ
j

0 (xi, 0), 0,
(
cD
eB(xi, 0)ye + cD

0B(xi, 0)
)
ξD + σ I

B(xi, 0)pI

)
.

Therefore

Ti∗v(A) ◦ ε(xi, 0, 1, ya, 0, pI , ξA) = (
xi, ξa, ρ

j
e (xi, 0)ye

+ ρ
j

0 (xi, 0),
(
cD
eb(x

i, 0)ye + cD
0b(x

i, 0)
)
ξD + σ I

b (xi, 0)pI

)
(5.15)

and

�A
L(xi, ya) = T i∗v(A) ◦ ε

(
xi, 0, 1, ya, 0,

∂L

∂xI
(xj , 0, 1, ya, 0),

∂L

∂yA
(xj , 0, 1, ya, 0)

)
=

(
xi,

∂L

∂yb
(xj , 0, 1, ya, 0), ρj

e (xi, 0)ye + ρ0(xi, 0),
(
cD
eb(x

i, 0)ye + cD
0b(x

i, 0)
)

× ∂L

∂yD
(xj , 0, 1, ya, 0) + σ I

b (x)
∂L

∂xI
(xj , 0, 1, ya, 0)

)
.
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Therefore, locally, the nonholonomic Euler–Lagrange equations read

xι = 0, y0 = 1, yα = 0,
dxj

dt
= ρj

e (xi, 0)ye + ρ
j

0 (xi, 0), (5.16)

d

dt

∂L

∂yb
(xi, 0, 1, ya, 0) = (

cD
eb(x

i, 0)ye + cD
0b(x

i, 0)
) ∂L

∂yD
(xi, 0, 1, ya, 0)

+ σ I
b (xi, 0)

∂L

∂xI
(xi, 0, 1, ya, 0). (5.17)

On the other hand, (5.17) means that δLb = 0 for all b, i.e. δL ∈ v(A)0. �

In the case of a Lie algebroid and linear constraints A = v(A) covering the whole M, when we
have in particular AM = M,σ i

e = ρi
e, the previous equations are precisely the nonholonomic

equations obtained in [5] (see equations (3.8)).
Again, there is an obvious version of the above picture for a time-dependent Lagrangian

based on (3.6). In the nonholonomic case, however, we cannot restrict the Lagrangian function
to the constraint, except for the case which is, in fact, holonomic.

5.5. Holonomic constraints

In the nonholonomic case, we can restrict the Lagrangian L to the constraint S if the geometric
constraint is holonomic. Note, however, that this does not imply automatically that the
corresponding vakonomic and nonholonomic Euler–Lagrange equations are the same, since
the equations are not precisely variational (they describe only sufficient conditions that the
variational principle holds true) and they are obtained in different ways. On the other hand,
in the linear case, holonomicity means that the vector subbundle S is closed with respect to
the algebroid bracket. Since the constraints are assumed to be integrable, for the canonical
Lie algebroid E = TM this means, in turn, that S = TSM , so the constraints are holonomic
in the classical sense. More generally, assume that A is an affine constraint, i.e. A is an affine
subbundle in E.

Theorem 7. An affine constraint A in a quasi-Lie algebroid E is holonomic if and only if the
algebroid bracket of sections of A is a section of v(A).

Proof. Let us choose a basis of sections ei and the corresponding linear coordinates (xa, yi)

in E such that A is locally defined by equations yi = 0, i > r + 1, and yr+1 = 1 and let
γ (t) = (x(t), y(t)) be an admissible path in A. Then, yi(t) = 0 for i > r + 1 and yr+1 = 1.
Moreover, ζ is a vertical variation of γ, ζ(x(t), y(t)) = f i(t)∂yi , if and only if f i = 0 for
i > r . In view of (2.10), δζ γ is tangent to A only if

df k

dt
(t) + ck

ij (x(t))yi(t)f j (t) = 0

for k > r . But for any k > r

df k

dt
(t) +

∑
i,j

ck
ij (x(t))yi(t)f j (t) =

∑
j�r

ck
(r+1)j (x(t))f j (t) +

∑
i,j�r

ck
ij (x(t))yi(t)f j (t).

As yi(t), f j (t) for i, j � r are arbitrary, ck
ij = 0 for k > r and i � r + 1, j � r . Since

ck
ij = −ck

ji , they vanish also for k > r and for all i, j � r + 1. This means that the bracket
of local sections [ei, ej ]ε, i, j � r + 1 belongs to the span of {e1, . . . , er}, i.e. is a section of
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v(A). But sections of A are of the form er+1 +
∑

i�r ϕi(x)ei , so their brackets are sections of
v(A). The converse is obvious. �

According to the terminology of [10–12], one can say that affine holonomic constraints
in a Lie algebroid are Lie affgebroids. A correct geometric description of time-dependent
systems and other systems, based on the idea of Lie affgebroid was first proposed in [34, 37]
and developed in [10–12].

5.6. Affine holonomic constraints—geometric approach

If A is a holonomic affine constraint, then, using local coordinates as above, we can prove
analogously to the proof of theorem 7 that cD

eb(x
i, 0) and cD

0b(x
i, 0) can be nonzero only for D

indexing a section of v(A), symbolically D = d, and that σ ι
b(x

i, 0) = 0. Now, using the local
form (5.15) of Ti∗v(A) ◦ ε, we conclude that Ti∗v(A) ◦ ε vanishes on the annihilator of TA. Hence,
Ti∗v(A) ◦ ε defines a map εA : T∗A → Tv(A)∗ and diagram (5.14) reduces to the following:

T∗A
εA

Tv(A)∗

τv(A)∗

A
λA
L

dL
ΛA

L

λL
v(A)∗ .

(5.18)

This time, however, only the restriction of L to A does matter. The phase space is v(A)∗,
the phase dynamics is implicitly defined as �A

L(A) = εA ◦ dL(A) ⊂ Tv(A)∗, and the Euler–
Lagrange equation for a curve γ in A reads

�A
L ◦ γ = t

(
λA

L ◦ γ
)
.

In local coordinates,

xι = 0, y0 = 1, yα = 0,
dxj

dt
= ρj

e (xi, 0)ye + ρ
j

0 (xi, 0), (5.19)

d

dt

(
∂L

∂yb
(xi, ya)

)
= (

cd
eb(x

i, 0)ye + cd
0b(x

i, 0)
) ∂L

∂yd
(xi, ya) + σ

j

b (xi, 0)
∂L

∂xj
(xi, ya). (5.20)

The above equations (canonically reduced to A) are exactly the Euler–Lagrange equations for
a (Lie) affgebroid obtained in [13, 19]. One can say that geometrical mechanics on a (Lie)
affgebroid is just geometrical mechanics on (Lie) algebroid with a holonomic affine constraint.
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